Site languages :




On this website

Home > Research Teams > Diversité et adaptation des bactéries phytopathogènes

En - Speciation des bacteries phytopathogenes

Team leader: NESME Xavier & LAVIRE Céline


Permanent members

BERTOLLA Franck Lecturer (MCF), UCB
CHAPULLIOT David Technician (T), INRA
GAILLARD Vincent Assistant Engineer (AI), UCB
KERZAON Isabelle Lecturer (MCF), UCB
LAVIRE Céline Lecturer (MCF), UCB
NESME Xavier Research Engineer (IR), INRA
VIAL Ludovic Lecturer (MCF), UCB

Non permanent members

DUPLAY Quentin PhD Student(2014-2017)
MEYER Thibault PhD Student(2014-2017)

in progress...

Bibliography :


  • Bouri M, et al. 2017. A simple and stable method of tagging Agrobacterium fabrum C58 for environmental monitoring. Phytopathologia Mediterranea. 56:1-9. doi: 10.14601/Phytopathol_Mediterr-18072.

  • Chapalain A, et al. 2017. Interplay between 4-hydroxy-3-methyl-2-alkylquinoline and N-acyl-homoserine lactone signaling in a Burkholderia cepacia complex clinical strain. Frontiers in Microbiology. 8. doi: 10.3389/fmicb.2017.01021.

  • Habbadi K, et al. 2017. Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis. Environmental Science and Pollution Research International. doi: 10.1007/s11356-017-1008-9.

  • Le Quéré A, et al. 2017. Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. BMC Genomics. 18:85. doi: 10.1186/s12864-016-3447-y.


  • Baude J, et al. 2016. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum. Applied and Environmental Microbiology. 82:AEM.00419-16. doi: 10.1128/AEM.00419-16.


  • Wisniewski-Dyé F, Vial L, Burdman S, Okon Y, Hartmann A. 2015. Phenotypic Variation in <i>Azospirillum</i> spp. and Other Root-Associated Bacteria. In: Biological Nitrogen Fixation. De Bruijn, FJ. John Wiley & Sons, Inc: Hoboken, NJ, USA p. 1047-1054.

  • Dequivre M, et al. 2015. Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58. Molecular Plant-Microbe Interactions. 28:580-589. doi: 10.1094/MPMI-12-14-0380-FI.

  • Habbadi K. 2015. Biological Control of <i>Agrobacterium vitis<i/> using Essential Oils of <i>Origanum compactum<i/> and <i>Thymus vulgaris<i/>. (Accessed no date).

  • Lassalle F, Muller D, Nesme X. 2015. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Research in Microbiology. doi: 10.1016/j.resmic.2015.06.008.

  • Lassalle F, et al. 2015. GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands. PLoS genetics. 11:e1004941. doi: 10.1371/journal.pgen.1004941.

  • Wisniewski-Dyé F, Vial L. 2015. Cell–Cell Communication in Azospirillum and Related PGPR. In: Handbook for Azospirillum. Cassán, FD, Okon, Y, & Creus, CM. Springer International Publishing p. 263-285.


  • Campillo T, et al. 2014. Analysis of hydroxycinnamic acids degradation in <i>Agrobacterium fabrum<i/> reveals a CoA-dependent, beta-oxidative deacetylation pathway. Applied and Environmental Microbiology. AEM.00475-14. doi: 10.1128/AEM.00475-14.

  • Mousavi SA, et al. 2014. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Systematic and Applied Microbiology. 37. doi: 10.1016/j.syapm.2013.12.007.

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. 2014. Revised phylogeny of Rhizobiaceae: Proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and Applied Microbiology. doi: 10.1016/j.syapm.2014.12.003.

  • Ramírez-Bahena MH, et al. 2014. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Molecular Phylogenetics and Evolution. doi: 10.1016/j.ympev.2014.01.005.